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EFFECT OF TRANSITIONAL NONEQUILIBRIUM ON THE

MOLECULAR-DISSOCIATION RATE IN A HYPERSONIC SHOCK WAVE

UDC 533.6.011V. A. Gorelov, V. N. Komarov,

M. M. Kuznetsov, and V. L. Yumashev

The problem of the influence of a nonequilibrium (non-Maxwellian) distribution of translational
energy over the degrees of freedom of molecules on the rate of their dissociation in a hypersonic
shock wave is considered. An approximate “beam”–continuous medium model, which was pre-
viously applied to describe a hypersonic flow of a perfect gas, was used to study translational
nonequilibrium. The degree of dissociation of diatomic molecules inside the shock-wave front,
which is caused by the nonequilibrium distribution over the translational degrees of freedom,
is evaluated. It is shown that the efficiency of the first inelastic collisions is determined by
the dissociation rate exponentially depending on the difference in the kinetic energy of “beam”
molecules and dissociation barrier.

Introduction. Theoretical and experimental investigations [1–3] showed that the flow in a shock wave
is nonequilibrium in terms of translational degrees of freedom. The consequence of translational nonequilibrium
is a significant increase in chemical-reaction rates [2, 3] and other relaxation processes due to increasing
efficiency of inelastic collisions in shock waves.

The effect considered may affect thermophysical parameters of hypersonic low-density gas flow in
regimes where the shock-wave thickness is comparable with its stand-off distance from the body surface. In
this case, direct numerical simulation based on the Monte Carlo method is used instead of the continuum
model based on Navier–Stokes equations. However, the use of the method of direct numerical simulation for
hypersonic flow computations taking into account complex chemical processes, ionization, and radiation in the
viscous shock layer requires great resources of memory and a high speed of computers used [4]. Nevertheless, it
is possible to find some problems of practical importance, where it is necessary to take into account translational
nonequilibrium in the shock-wave front in the continuum flow, with the Navier–Stokes model applicable to
numerical simulation of the processes in the shock layer except for the shock-wave front region. One of these
problems is the determination of intensity of nonequilibrium radiation of the shock layer at the entrance to
the atmosphere of the Earth and other planets at altitudes corresponding to the maximum heat flux to the
spacecraft surface.

Figure 1 shows the measured intensity of nonequilibrium radiation I behind the front of a hypersonic
shock wave of a CO molecule in the ultraviolet range (system of molecular emission bands of CO4+), which
contains the major part of the radiative heat flux to the surface of a spacecraft entering the Martian atmo-
sphere. The radiation was registered in an electric-discharge shock tube of the Central Aerohydrodynamic
Institute [5]. The gas mixture in the tube channel simulated the Martian atmosphere (97% CO2 and 3% N2).
The initial gas pressure was p1 = 26.3 Pa. The shock-wave velocity was V S = 7.15 km/sec. The radiation in-
tensity and the time from the moment of radiation registration in an examined cross section of the shock-tube

Central Aerohydrodynamic Institute, Zhukovskii 140180. Translated from Prikladnaya Mekhanika i
Tekhnicheskaya Fizika, Vol. 42, No. 2, pp. 42–51, March–April, 2001. Original article submitted February 14,
2000.

0021-8944/01/4202-0219 $25.00 c© 2001 Plenum Publishing Corporation 219



Fig. 1. Experimental dependence of the radiation intensity of a CO
molecule (system of emission from CO4+) on time behind the front of
a strong shock wave [λ = (200± 3.4) nm].

channel are laid on the ordinate and abscissa axes, respectively. It is seen that the maximum of radiation in
the system of CO4+ bands is observed for t 6 0.25 µsec, which corresponds to the distance x̄ = x/λ∞ 6 10
from the “beginning” of the shock-wave front (λ∞ is the mean free path of molecules ahead of the shock wave).

Thus, it follows from the experiment that the maximum intensity of nonequilibrium radiation is located
in the region of shock-wave “formation.” Therefore, for a correct numerical calculation of the intensity of a
nonequilibrium heat flux to the spacecraft surface, one should take into account the effects of translational
nonequilibrium in the bow shock-wave front, whereas the convective component of the heat flux may be
determined using the Navier–Stokes solver. The example presented shows that it is reasonable to develop an
approximate method for taking into account the effects of translational nonequilibrium within the Navier–
Stokes hypersonic viscous flow model.

A simple physical model “beam”–continuous medium was developed in [6–8]. This model effectively
takes into account the elevated concentration of high-energy molecules in the shock wave by introducing a
high-energy medium (“beam”) which interacts by means of collisions with randomly moving molecules having
the Maxwell–Boltzmann distribution with the Navier–Stokes allowance for dissipation. In the process of
elastic collisions, molecules of the “beam” are irreversibly transformed into “random” molecules; therefore, the
“beam”-molecule concentration decreases from the free-stream value to zero. The concentration of “random”
molecules increases from zero in the free stream up a maximum value at the back front of the shock wave.

It should be noted that the “beam”–continuous medium model is actually a simplified version of the
model proposed by Tamm and Mott-Smith, which takes into account the strong asymmetry of the molecular
distribution function in a hypersonic shock wave. From the physical point of view, the strong asymmetry
allows one to take into account the role of the “first” high-energy collisions, which lead to excitation of
internal degrees of freedom and chemical reactions. Being used for hypersonic gas flow calculations [6–9],
this model in the first approximation eliminated many drawbacks inherent in the Navier–Stokes description
of shock-wave processes and made it possible to take into account the basic kinetic effects, which result in an
increase in the shock-wave width, a more intense increase in the mean local temperature, and an excess of the
so-called longitudinal temperature over the mean local temperature [9].

In the present paper, the “beam”–continuous medium model is extended to the case of molecular
dissociation inside the shock wave. In this formulation with verified values of chemical-reaction rates, this
model can be used in exact numerical calculations of hypersonic flow, taking into account approximately the
translational nonequilibrium in the shock-wave front region.

1. Formulation of the Problem. In considering dissociation inside the shock wave, which is caused
by the first high-energy collisions of “beam” molecules with molecules randomly distributed in the shock wave,
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Fig. 2. Characteristic zones of flow deceleration in the shock wave.

one can naturally assume that dissociation occurs simultaneously with the processes of viscous and thermal
dissipations. Therefore, it is reasonable to consider these processes in characteristic (supersonic, transonic,
and supersonic) regions of flow deceleration in the shock wave. These regions are shown schematically in Fig. 2
(Vr = ur/ub,∞ is the relative velocity, Mr = ur/

√
γRTr/µA2 is the Mach number, γ is the ratio of specific

heats, R is the universal gas constant, T is the temperature, µA2 is the molecular mass, and ε = (γ−1)/(γ+1));
the subscripts “r” and “b” refer to the parameters of the flux of random and “beam” molecules, respectively.

The following assumptions may be made for an approximate analytical calculation of dissociation inside
the shock-wave front, which is caused by translational nonequilibrium.

1) Dissociation is caused only by collisions with high-energy molecules of the “beam” [temperature
(“Arrhenius”) dissociation is ignored];

2) There is no dissociation in the supersonic part of the shock wave (see Fig. 2);
3) Dissociation proceeds effectively in the transonic and subsonic regions of the shock wave.
The above assumptions are based on the following data.
1. “Arrhenius” dissociation in all previous studies was insignificant inside a thin shock front. Gorinov

and Magomedov argue [10] that the assumption about the “frozen” (in terms of dissociation) wave front is
valid for hypersonic air flows up to free stream velocities V∞ 6 7 km/sec.

2. In the front (supersonic) part of the shock wave, the relative velocity of the “beam” molecules ub−ur

is small up to the transonic region, where ur 6= ub. The value of ur here is of the order of the velocity of
sound: ur '

√
ε ub [11, 12]. For this reason, the shock mechanism of collisions between the “beam” molecules

and random molecules does not work in the supersonic part of the shock wave; the process of dissociation
proceeds in the “Arrhenius” form, and its role is negligibly small.

3. In the transonic and subsonic parts of the shock wave, the velocity of “random” molecules is small
and varies from transonic (ur ≈

√
ε ub) to subsonic (ur ≈ εub) at the rear front [12]. The relative velocity of

“beam” and “random” molecules is maximum: ub − ur ≈ ub; hence, the nonequilibrium dissociation caused
by decomposition of “random” molecules due to their collisions with “beam” molecules is also maximum in
this region. However, it should be borne in mind that the concentration of “beam” molecules decreases here
due to elastic collisions in the front region of the shock wave.

Thus, in the approximate analytical investigation, the problem is divided into two parts. In the first
part of the shock wave, where the velocity of “random” molecules is high (ur ≈ ub) and their velocity relative
to the “beam” is low (ur− ub � ub), we consider the flow of a perfect gas and calculate the concentrations of
“beam” molecules. In the second part of the shock wave, because of the low mass mean velocity of randomly
moving molecules (ε 6 Vr 6

√
ε), the change in the relative velocity is ignored (ub − ur ≈ ub). In this

region, the effective concentration of atoms due to the nonequilibrium dissociation of “random” molecules is
calculated.
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2. System of Equations Describing the Motion of a Translationally Nonequilibrium
Medium Inside the Shock-Wave Front (Binary Mixture of Atoms A and Molecules A2). The
system of equations of continuity, motion, energy, state, and variation of the molecular-beam density and mass
concentration of atoms has the following form:

ρ̂+ ρVr = 1; (2.1)

ρV 2
r + ρ̂+ p− 4

3
Hω

r

dVr

dξ
= 1; (2.2)

ρVr(Hr + αAH
0
A) +

1
2
ρ+

1
2
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r
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dH
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; (2.3)

p = ρ
1 + αA
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8
√

2
γ − 1
γ
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1− ρ̂
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; (2.5)

d
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)dαA
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=

5
8
√

2
γ − 1
γ

H1−ωinel
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ρ̂(1− ρ̂)
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. (2.6)

Here ρ̂ = ρb/ρb,∞ is the relative density of “beam” molecules, ρ = ρr/ρb,∞ is the relative concentration,
Vr = ur/ub,∞ and Vb = ub/ub,∞ ≡ 1 are, respectively, the relative velocities of “random” and “beam”
molecules, ρb,∞ is the mass-mean density (according to the “beam”–continuous medium model, the mass-
mean velocity of the “beam” molecules in the incoming flow is ub,∞ = ub = const [6–8]), p = pr/(ρb,∞u

2
b)

is the relative pressure in the continuous medium with randomly moving molecules, θr = 2RTr/µA2
is the

dimensionless temperature of the randomly moving medium, αA = ρA/(ρA + ρA2
) is the mass concentration

of atoms, hr is the specific static enthalpy, ξ = x/l (l = kru
2ω−1
b /ρb, where kr is a constant in the power

dependence of viscosity on the temperature Tr), Hr = hr/u
2
b, H0

A = h0
A/u

2
b is the dimensionless enthalpy of

formation of atoms (or dissociation energy), and Pr and Le are the Prandtl and Lewis numbers, respectively,
and ScA is the Schmidt number for the atomic component. The parameters Fel and Finel are proportional
to elastic and inelastic collisions of “beam” molecules with “random” molecules, which lead to dissociation.
According to [6], we have

Fel(z) =
1
2

[
exp(−z2) +

(
2z +

1
z

)√π
2

erf (z)
]
, (2.7)

where z = (ub − ur)/
√

2RTr/µA2
and erf (z) =

2√
π

z∫
0

exp(−y2) dy is the Gauss error integral.

After the simplest transformations, the expression for Finel obtained in [2] may be transformed to a
relation similar to (2.7):

Finel =
θ+

2z
Fel(θ−) +

θ−
2z

Fel(θ+) +
√
π

4

√
θd.r.

z

[erf (θ+)
θ+

− erf (θ−)
θ−

]
. (2.8)

Here θ+ =
√
θd.r. + z and θ− =

√
θd.r. − z, where θd.r. = Td/Tr (Td = Ed/k is the characteristic temperature

corresponding to the threshold energy of dissociation, Ed is the energy of dissociation of molecules, and k is
the Boltzmann constant).

Velikodnyi [2] used two Maxwellian distributions with different mean macroscopic velocities and tem-
peratures. The “beam”–continuous medium model is a special case of this approximation, since the delta-
shaped velocity-distribution function for “beam” molecules is obtained by the limiting transition from the
corresponding Maxwellian distribution of particles in the free stream as Tb → 0.

Taking into account the continuity equation (2.1), the total-energy equation (2.3) admits an exact
solution for Pr = ScA = 3/4 and Le = 1, which has the following form:

Hr + αAH
0
A +

V 2
r

2
=

1
2
. (2.9)
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Relation (2.9) extends a similar energy integral obtained in [7] to the “beam–random” medium model in a
perfect gas without chemical transformations to the case of dissociation.

Taking into account (2.9), for a constant mean heat capacity cp and molecular weight µ̄, the expression
for the reduced temperature θr of the random medium is

θr =
γ − 1
γ

(1− V 2
r − αAθd)

(
θd =

2R
µ̄

Td

u2
b

, µ̄ =
αA

µA
+
αA2

µA2

)
.

3. Boundary Conditions for a System of Equations Describing the Motion of a Trans-
lationally Nonequilibrium Medium Inside the Front of a “Viscous” Shock Wave. The boundary
conditions for system (2.1)–(2.9) are the free-stream conditions in the hypersonic “beam” of molecules incom-
ing onto the wave (ξ → −∞) Vr = ρ̂A2

= 1 and Tr = pr = αA = ρA2
= 0 and the following conditions at the

rear front of the shock wave, which extend the corresponding known Rankine–Hugoniot conditions [13] to the
case of a translationally nonequilibrium dissociating mixture (ξ →∞):

Vr = εs, ρr =
1
εs
, ρ̂s = 0, pr =

1 + αs
2εs

θr, θr =
γ − 1
γ

(1− ε2
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5

8
√

2
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γ
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−∞
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r Finel
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dξ, εr =
γ − 1
γ + 1

[
1 +

αs
2

(1 + αs)θd − 1
]

+O
(γ − 1
γ + 1

)2

.

The quantities marked by the subscript s correspond to the parameters of the “beam–random” medium for
ξ →∞.

To be used in practical applications, formula (2.8) may be approximately represented in the following
form:

Finel
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√
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]√
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γ
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1 +
√
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2
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− (1−

√
θd)2

θr

)

= 1− θd +
1 +
√
θd

2

√
εγ
π

exp
(
− D2

Γ

1− αθd

)
for θd 6 1. (3.2)

Here Fel,max = πd2
Aub(1− Vr), Dγ = (

√
θd − 1)/εγ , and DΓ = (1−

√
θd)/εγ .

4. Formulas for the Degree of Translationally Nonequilibrium Dissociation in the Shock-
Wave Front. To determine the degree of nonequilibrium dissociation αA, it is reasonable to consider first
the solution of Eq. (2.6) in the so-called inviscid approximation, i.e., with the diffusion process ignored. In
this approximation, Eq. (2.5) acquires the form

d(ρVrαA)
dξ

=
5

8
√

2
γ − 1
γ

H1−ω
r Finel

ρ̂(1− ρ̂)
Vr

. (4.1)

In Eq. (4.1), we pass from the variable ξ to the variable ρ̂ using Eqs. (2.1) and (2.6):

(1− ρ̂)
dαA

dρ̂
= αA − F inel

el . (4.2)

Here F inel
el ≡ (Finel/Fel)/(1 + Finel/Fel). Equation (4.2) is an equation with separating variables and has the

following solution:
αA∫
0

dα

F inel
el − α

= ln
1− ρ̂
1− ρ̂0

. (4.3)
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Here ρ̂0 is the relative density of the hypersonic “beam” of molecules in the beginning of the zone of developed
dissociation, where αA ' 0, and Vr '

√
ε has the order of the relative velocity of sound.

The equality that turns to zero the denominator in the integrand of Eq. (4.3),

F inel
el ≡ Finel/Fel

1 + Finel/Fel
= αA, (4.4)

yields the maximum possible degree of nonequilibrium dissociation in the problem considered. From the
physical point of view, it corresponds to a state, where the increase in the concentration of “random” molecules
due to their elastic collisions with “beam” molecules is compensated by the decrease in concentration due to
inelastic collisions, which lead to nonequilibrium dissociation of “random” molecules.

To calculate the primitive function in the left side of Eq. (4.3), we represent the quantity F inel
el as an

explicit function of the atomic concentration αA. Taking into account that αAθd < 1, we expand the exponent
in (3.1) into a series and transform it to a form convenient for integration:

F inel
el ≡ Finel

Fel,max
' Cm exp (−ωmβ). (4.5)

Here Cm = (2pelD
2s
γ + 1)

√
εγ/π exp (−D2

γ), εγ = (γ − 1)/γ, ωm = D2
γθdαm, αm = Cm/(1 + Cm), and

β = α/αm. From here, we obtain

F inel
el

1 + F inel
el

' Cm exp (−ωmβ)
1 + Cm exp (−ωmβ)

' αm
(

1− 1− exp (−ωmβ)
1 + Cm

)
≡ αm(1− δmβ), (4.6)

where δm = ωm/(1 + Cm).
In deriving Eq. (4.6), we took into account that ωm < 1. The quantity 1− exp (−ωmβ) is replaced by

the first two terms of expansion into a Taylor series: 1− exp (−ωmβ) ' 1 + ωmβ.
With allowance for Eqs. (4.5) and (4.6), formula (4.3) takes the form

β∫
0

dz

1− (1 + δm)z
= ln

1− ρ̂
1− ρ̂0

. (4.7)

From here, we obtain

αA

αm
= (1 + δm)−1

[
1−

(1− ρ̂0

1− ρ̂

)1+δm

]
. (4.8)

For small values of the parameter δm corresponding to two limiting transitions D2
γ →∞ and D2

γ → 0,
since δm ∼ ωm ∼ D2

γ exp (−D2
γ), formula (4.8) reduces to a simpler form

αA

αm
→ ρ̂0 − ρ̂

1− ρ̂
. (4.9)

On the right side of the shock wave, where ρ̂(ξ)→ 0 as ξ →∞, the concentration of atoms is αA = αs,
and

αs = αm[1− (1− ρ̂)1+δm ](1 + δm)−1, (4.10)

αs → αmρ̂0 for δm → 0. (4.11)

Formulas (4.5)–(4.11) are applicable in the “under-threshold” regime of dissociation, where θd > 1 or
Td > Tkin [Tkin = µA2

u2
b,∞(1− Vr)2/(2R)].

Using a similar procedure of expansion of the exponent in (3.2) for θd 6 1 or Td 6 Tkin, we obtain

αA

αM
= (1 + ∆M )−1

[
1−

(1− ρ̂0

1− ρ̂

)1+∆M

]
. (4.12)

Here αM = (1 − θd + CM )/(2 − θd + CM ), CM = ((1 +
√
θd)/2)

√
εγ/π exp (−D2

Γ), D2
Γ = (1 −

√
θd)2/2, and

∆M = CMθdD
2
Γ/(2− θd + CM )2.

224



Formulas (4.5)–(4.12) correspond to the case, where both the “beam” molecules and the “random”
molecules dissociate in inelastic collisions. If we take into account only the dissociation of “random” molecules,
then the relative dissociation rate F inel

el /(1+F inel
el ) should be replaced by F inel

el (1−αA)/(1+F inel
el (1−αA)), and

the parameters δm, ∆M , and αs in Eqs. (4.8) and (4.12) by δ′m = δm+αm(1−αm), ∆′M = ∆M +αM (1−αM ),
and α′s ≈ αs, respectively.

It follows from Eqs. (4.5)–(4.12) for nonequilibrium dissociation that the degree of dissociation αA

depends on the generalized coordinate of the reaction: the concentration of molecules of the hypersonic
“beam” ρ̂ and the parameters of the problem θd, D2

γ , D2
Γ, pel, γ, and s. It also follows from (4.5)–(4.12) that

the maximum degrees of nonequilibrium dissociation (4.4) are not reached, since ρ̂0 is always smaller than
unity because of the decrease in density of “beam” molecules during elastic collisions.

Due to temperature dissociation, the equation for the change in the atomic concentration αA may be
written as

d[(1− ρ̂)αA]
dξ

=
5

8
√

2
γ − 1
γ

H1−ω
r F inel

el

1− ρ̂
Vr

[
(1− αA)2 + (1 + αA)ρ̂+ (1− αA)αA

1− ρ̂
Vr

]
. (4.13)

Here F inel
el is the velocity of the equilibrium temperature (“Arrhenius”) dissociation, and the terms in square

brackets correspond to the following types of collisions: Ar
2 +Ar

2, Ar
2 +Ab

2 , Ar +Ab
2 , and Ar

2 +Ar.
Passing to the variable ρ̂, Eq. (4.14) may be written as

(1− ρ̂)
dαA

dρ̂
= −αT exp (ωE(1− αA))

(1− αA)(1− ρ̂)
ρ̂

+ αA. (4.14)

Here αT = ((2pelD
2s+1
E + 1)/Vr)

√
εγ/π exp (−D2

E(1 + θd)), ωE = D2
Eθd, D2

E = θd/εγ , and Vr ' ε = (γ −
1)/(γ + 1).

Ignoring the last term in Eq. (4.14) in our estimates (since we have ρ̂ < 1 in the zone of developed
dissociation and ρ̂ > 1 on the right side of the shock wave), we obtain the following relation for αA:

−Ei [−ωE(1− αA)] = −Ei (−ωE) + αT ln
ρ̂

ρ̂0
. (4.15)

Here −Ei (−x) =

∞∫
x

exp (−y)
y

dy is the integral exponential function.

The second term in the right side of Eq. (4.15) tends to infinity as ρ̂ → 0. It follows from here that
the temperature (“Arrhenius”) dissociation of molecules is completed by their full dissociation as ρ̂→ 0, i.e.,
αA = 1. It is known that this state is observed at distances of the order of many mean free paths behind the
dissociation zone adjacent to the “viscous” shock wave [13] under the condition that the rate of three-particle
recombination is small.

Since in the problem considered it is of interest to determine first of all the concentration of atoms
formed only within the thickness of the “viscous” shock, we confine ourselves to a small finite value of the
ratio ρ̂/ρ̂0, assuming that

ρ̂/ρ̂0 ' ρ̂k/ρ̂0 = 0.1. (4.16)

The concentration of atoms formed due to temperature dissociation αTs was determined from Eqs. (4.15)
and (4.16).

To compare the concentrations of atoms αs and αTs with the equilibrium values αeq, we use the
Lighthill–Freeman dissociation model [13]. In accordance with this model, the condition of equal rates of
molecular dissociation and three-particle recombination of atoms is

(1− αeq) exp
(
− Td

T

)
=

ρ

ρd
α2

eq. (4.17)

Here ρd is a parameter depending on the properties of the molecular gas. Taking into account the notation
introduced above, Eq. (4.17) can be conveniently written in the following form:

ln
α2

eq

1− αeq
= ln

ρd

ρ0
+ ln

εs
2

+
z

7
+ ln [1 + (1 + αeq)(1− αeqθd)]− D2

E

1− αeqθd
. (4.18)
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Fig. 3. Degrees of equilibrium dissociation αeq, temperature dissociation αTs , and nonequilibrium dissociation
αs as functions of the dimensionless energy of dissociation θd for pel = 0.1, s = 1, γ = 1.4, ρ̂0 = 0.5, and
ρ0 = 1.25 kg/m3: curves 1–3 refer to αeq for z = 0, 40, and 80 km, respectively; curves 4 and 5 refer to αTs and
αs, respectively.

Here εs = (γ − 1)/(γ + 1), ρ0 = 1.25 kg/m3, ρd = 1.5 · 105 kg/m3, and z [km] is the altitude in the Earth’s
atmosphere.

For

D2
E <

z

7
+ ln

εsρd

2ρ0
, (4.19)

it is convenient to solve Eq. (4.18) by the following iterative scheme:

αeq,k+1 = 1−D2
E/{z/7 + ln (εsρd/(2ρ0))− ln (α2

eq,k/(1− αeq,k)) + ln [1 + (1 + αeq,k)(1− αeq,kθd)]}. (4.20)

If condition (4.19) cannot be fulfilled, the transcendental equation (4.20) can be solved by Newton’s
method choosing, for example, the quantity θ−1

d as the zero approximation αeq,0. For small values of the
relative energy of dissociation θd 6 1, when the value of αeq is close to unity and condition (4.19) is not
satisfied, it is convenient to use the following iterative scheme:

α2
eq,k+1

1− αeq,k+1
= qk = 104 exp

(z
7

){
1 + (1− αeq,k)(1− αeq,kθd) exp

[
− D2

E

1− αeq,kθd

]}
,

αeq,k+1 =
qk
2

(√
1 +

4
qk
− 1
)
.

Figure 3 shows the degree of nonequilibrium dissociation αs as a function of the dimensionless energy
of dissociation θd. The values of αs are compared with the corresponding values of the degree of temperature
dissociation αTs and equilibrium values αeq for different flight altitudes z in the Earth’s atmosphere (the density
of the incoming hypersonic “beam” was ρb ' ρ0 exp (−z/7), where ρ0 = 1.25 kg/m3 [13]).

It follows from Fig. 3 that, for high values of the relative energy of dissociation (θd > 1.5), the concen-
trations αTs are negligibly small as compared to αs. However, the values of αs and αTs become comparable
for θd ≈ 1, the temperature dissociation is completed by full decomposition of molecules for θd > 0.5 (αTs = 1
in the absence of three-particle recombination), and the degree of nonequilibrium dissociation due to the re-
duction of the energy barrier (due to the great difference in the “beam” and “random medium” velocities) is
majorated by Eq. (4.4).

A comparison of equilibrium values αeq with αs, α′eq, and αTs shows that αeq is greater than these
parameters almost within the entire range of θd. However, it should be noted that the equilibrium concentration
of atoms αeq is actually reached far downstream of the “viscous” shock wave.
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Thus, the degree of dissociation of a binary mixture of gases (A and A2) in the model “beam”–
continuous medium in the front of a hypersonic shock wave in a wide range of θd is rather high in contrast to
the “Arrhenius” model of temperature dissociation.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-
00597).
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